MEMS-Technologie ebnet
Weg für alltagstaugliche Spektrometer
Mikro-elektro-mechanische Systeme (MEMS) sind Wegbereiter für mobil einsetzbare handliche Sensorsysteme, die einfach durchzuführende Messungen vor Ort oder auch eine Integration in industrielle Messtechnik in Produktions- und Verarbeitungsanlagen erlauben. Mögliche Anwendungen finden sich unter anderem im Bereich spektroskopischer Messsysteme.
Dabei werden Stoffe elektromagnetischen oder akustischen Wellen ausgesetzt und die spektrale Antwort der Probe detektiert. So lassen sich über die Messung des einzigartigen Spektrums ("Fingerabdruck") gleichermaßen feste, flüssige oder gasförmige Stoffe berührungslos bestimmen und analysieren.
MEMS-Gitterspektrometer:
So klein wie ein Stück Würfelzucker.
Bild: Fraunhofer IPMS
Das Fraunhofer-Institut für Photonische Mikrosysteme IPMS, eine international führende Einrichtung in der Entwicklung und Fertigung von MEMS, stellt auf der Messe Sensor und Test vom 10.-12.05.2016 in Nürnberg zwei Ansätze der optischen Spektroskopie sowie eine Lösung der Ultraschallspektroskopie vor, die wegweisend für die Entwicklung kompakter, MEMS basierter, mobiler Minispektrometer sein könnten.
Das Potenzial spektroskopischer Messungen ist enorm. Der einzigartige "Fingerabdruck" liefert detaillierte Informationen zu Feststoffen, Flüssigkeiten und Gasen. Die Messungen selbst sind zumeist sehr schnell möglich, unkompliziert und kostenschonend, da die Proben nicht aufwendig vorbereitet werden müssen und durch die Messungen nicht zerstört werden. Ziel der Wissenschaftlerinnen und Wissenschaftler am Fraunhofer IPMS ist es, immer kleinere und robuste Spektrometer zu entwickeln, die für den Feldeinsatz geeignet sind oder in industrielle Messtechnik integriert werden können. So haben die Forscher ein mobiles MEMS-Gitter-Spektrometer im Würfelzuckerformat entwickelt, mit dessen Hilfe, flüssige und feste Stoffe durch Analyse des Lichts im nahen Infrarotbereich (950 nm-1900 nm) untersucht werden können. Das System, das zum Beispiel verschiedene Pulver wie Zucker, Süßstoff oder Salz unterscheiden kann, ist mit einem Volumen von nur 2,1 cm³ etwa 30 Prozent kleiner als ein gewöhnliches Stück Würfelzucker und wird über ein gewöhnliches Smartphone gesteuert.
QCL-Modul mit integriertem
MEMS-Beugungsgitter.
Bild: Fraunhofer IAF
Es erlaubt Messungen im Wellenlängenbereich von 950 nm bis 1900 nm bei einer spektralen Auflösung von 10 nm. Damit ist die Technologie für die Analyse unterschiedlichster organischer Verbindungen und vielfältige Anwendungen wie zum Beispiel tragbare Messgeräte für die Nahrungsmittelindustrie, mobile medizintechnische und pharmakologische Analysegeräte, industrielle in situ-Qualitätstests oder Frühwarn- und Überwachungssysteme in Sicherheitsanwendungen und Gebäudemanagement interessant.
Viele für die Sicherheitsüberwachung bedeutsame chemische Stoffe haben ihre charakteristischen Absorptionslinien allerdings nicht im nahen Infrarot, sondern im mittleren Infrarotbereich (3 - 12 µm). Um auf mögliche Risiken, zum Beispiel entweichende Giftstoffe, über spektroskopische Analysen einschätzen und rechtzeitig reagieren zu können, entwickeln das Fraunhofer IPMS und das Fraunhofer-Institut für Angewandte Festkörperphysik IAF gemeinsam eine neuartige, handliche durchstimmbare monochromatische Strahlungsquelle für den mittleren Infrarotbereich.
128-Kanal-CMUT-Chip
Bild: Fraunhofer IPMS
Diese bildet die technologische Grundlage für die Entwicklung handlicher Spektrometer, die in der Lage sind, die Konzentration verschiedener Gefahrstoffe schnell und vor Ort zu ermitteln. Herzstück des Systems ist die Kombination aus einem im mittleren Infrarot breitbandig anregbaren Quantenkaskadenlaserchip, der am Fraunhofer-IAF entwickelt wurde, mit einem MEMS-Scanner basierten lichtstarken Beugungsgitter. Um das emittierte Licht des Quantenkaskadenlasers verändern beziehungsweise durchstimmen zu können wird das mikromechanisch gefertigte Bauelement mit einem Durchmesser von 5mm in dem externen Resonator des Quantenkaskadenlasers platziert. Es erlaubt das Durchfahren der Laserwellenlänge mit einer Frequenz von 1000Hz und einem Durchstimmbereich von bis zu 20 Prozent der Zentralwellenlänge. Im Zeitmultiplex kann so die Probe mit unterschiedlichen Wellenlängen bestrahlt und mittels des »Fingerabdrucks« auf Art und Konzentration der Gefahrstoffe geschlossen werden.
Neben Verfahren der optischen Spektroskopie arbeitet das Fraunhofer IPMS an der spektroskopischen Untersuchung mittels Ultraschall. Diese ermöglicht insbesondere Aussagen über physikalische Kenngrößen von Materialien sowie chemische Analyse von Dispersionen. So sind über die Analyse der frequenzabhängigen Dämpfung und Schallgeschwindigkeit Aussagen über Qualität und Zusammensetzung von Ölen, Alkohol-Wasser-Gemischen oder sonstiger Flüssigkeiten möglich, eine ideale Ergänzung der optischen Spektroskopie. Kapazitive mikromechanische Ultraschallwandler (CMUT) können in diesem Anwendungsbereich Wegbereiter für neuartige hochkompakte Umweltmesssysteme sein. Im Gegensatz zu gängigen piezoelektrischen Ultraschallelementen werden CMUTs mittels mikromechanischer Herstellungsverfahren gefertigt und ermöglichen extrem kompakte Geräte. Durch eine monolithische Integration der Sensoren mit CMOS-Schaltungen können komplette Analysesysteme auf einem einzigen Chip aufgebaut werden. Für die akustische Spektroskopie sind CMUTs ideal geeignet, da sie in flüssige Medien extrem effizient den Schall einstrahlen können, die Detektion hochsensitiv ist und eine große Frequenzbandbreite verwendet werden kann.
Quelle: Fraunhofer IPMS